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A joint frailty model to estimate the
recurrence process and the
disease-specific mortality process
without needing the cause of death
Aurélien Belot,a,b,c,d,e*† Virginie Rondeau,f,g
Laurent Remontet,a,b,c,d Roch Giorgih,i,j and the CENSUR
working survival group

In chronic diseases, such as cancer, recurrent events (such as relapses) are commonly observed; these could be
interrupted by death. With such data, a joint analysis of recurrence and mortality processes is usually conducted
with a frailty parameter shared by both processes. We examined a joint modeling of these processes considering
death under two aspects: ‘death due to the disease under study’ and ‘death due to other causes’, which enables
estimating the disease-specific mortality hazard. The excess hazard model was used to overcome the difficulties
in determining the causes of deaths (unavailability or unreliability); this model allows estimating the disease-
specific mortality hazard without needing the cause of death but using the mortality hazards observed in the
general population. We propose an approach to model jointly recurrence and disease-specific mortality processes
within a parametric framework. A correlation between the two processes is taken into account through a shared
frailty parameter. This approach allows estimating unbiased covariate effects on the hazards of recurrence and
disease-specific mortality. The performance of the approach was evaluated by simulations with different scenar-
ios. The method is illustrated by an analysis of a population-based dataset on colon cancer with observations
of colon cancer recurrences and deaths. The benefits of the new approach are highlighted by comparison with
the ‘classical’ joint model of recurrence and overall mortality. Moreover, we assessed the goodness of fit of the
proposed model. Comparisons between the conditional hazard and the marginal hazard of the disease-specific
mortality are shown, and differences in interpretation are discussed. Copyright © 2014 John Wiley & Sons, Ltd.

Keywords: excess hazard; joint model; recurrent events; shared frailty

1. Introduction

The objective of many medical and epidemiological studies is to estimate the hazard of death. For this
estimation, patient death is observed and a survival analysis is carried out to model the time-to-death
and estimate the impact of prognostic factors on the hazard of death. Many works have been devoted
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to various useful approaches within this context [1, 2]. However, in many clinical situations, the sub-
jects may experience repeated or recurrent events before dying. These events may be repeated tumor
occurrences, repeated hospitalizations, multiple rejection episodes after organ transplantation, and so on
[3]. Furthermore, there is variability between patients in the probability of these recurrent events (some
patients are at a low risk and others at a high risk); this variability leads to correlation between recurrent
events in the same patient, and this correlation should be taken into account.

Different methodological developments were proposed to analyze recurrent events. Among them, the
three mains models are the following: (i) the marginal model of Wei et al. [4]; (ii) the conditional model
of Prentice et al., [5]; and (iii) the model of Andersen and Gill [6] based on the powerful counting process
and martingale theory. Briefly, the marginal model is a Cox proportional hazard (PH) model stratified
on the number of events; it assumes that each patient is at risk for each event and may be viewed as a
variance-corrected model. When the model’s parameters are estimated, the times to the events in each
patient are assumed independent, but a variance-covariance matrix, which takes into account the corre-
lation between times to events, is used for inference. The conditional model differs principally by its risk
set. It considers that the risk set for the .k C 1/th recurrence is restricted to those individuals who have
experienced k recurrences. In the Andersen and Gill model, the hazard of the recurrent process at time t
describes the probability of a new recurrence in the very small interval [t; t C�t ] given an individual’s
past history of recurrences up to t . One solution for fitting these models is to create a reorganized dataset
that can be further analyzed with any standard statistical software [7]. Many well-written papers that
describe clearly the approaches to analyze recurrent event data may be found elsewhere [8–11].

Other models that allow taking into account the correlation between recurrent event times are the
frailty models [12]. These correspond to extensions of PH models through inclusion of a frailty term
(or random effect), which induces dependence between the multiple times to the events in the same
individual. Frailty models have been proposed and successfully used in the analysis of multivariate and
correlated failure time data [13–15]. Within the framework of parametric models, the analyst has to
choose the shape of the baseline hazard and the distribution of the frailty term. A mathematically conve-
nient choice is then the gamma distribution because the full marginal likelihood has an explicit analytic
expression [14]. Maximizing the likelihood is then straightforward using an optimization procedure such
as the Newton–Raphson procedure. With other distributions of frailty, one may use the full likelihood
based on numerical integration of the conditional likelihood (for example, the Gauss–Hermite quadrature
method) [16]. Within the framework of the semi-parametric Cox PH model, the analyst has to choose
only the distribution of the frailty, the baseline hazard being treated as a nuisance parameter. A gamma or
a lognormal distribution is usually assumed (but other distributions are also usable), and approaches to
fit these models are based on the Expectation-Maximization (EM) algorithm [17] or on the maximization
of the penalized partial likelihood [7]. Other approaches that assume a smooth spline function for the
baseline hazard were proposed; in these approaches, inference is made using the maximum penalized
likelihood [18].

However, in many clinical situations, the follow-up of recurrent events may stop because of patient
death [19]. As death precludes the observation of recurrence, the question is whether this censoring is
independent of the recurrent process. Within the context of cancer survival, for example, the terminal
event (death, whatever its cause) depends on the recurrent event process (relapses) and creates an infor-
mative censoring. When such an informative censoring exists, analyzing a dataset on recurrent events or
terminal events separately may lead to biased estimates [20]. To overcome this difficulty, a joint mod-
eling of recurrence and mortality processes was proposed with a frailty term shared by the intensities
of the two processes [20–23]. The joint modeling approaches are indeed useful to assess the unbiased
covariate effects on both processes as well as the level of their correlation.

To our opinion, this correlation is not meaningful within the framework of population-based studies
on cancer because death may be related to cancer itself or to other causes; the expected correlation is
here between the recurrence process and the cancer-related mortality process. We believe that death due
to cancer is the event that creates an informative censoring and not death whatever its cause. Therefore,
knowing the exact cause of death is crucial, but, unfortunately, in many population-based studies, this
information is not usually collected. The cause of death may then be obtained from death certificates, but
these are often inaccurate [24, 25]; the excess mortality hazard method was developed to overcome this
difficulty [26]. Using the population (i.e., the expected) mortality hazard, this method allows estimat-
ing an excess mortality hazard that can be interpreted as the disease-specific mortality hazard [26, 27].
The excess mortality hazard method enables us (i) to differentiate the impact of the ‘demographic’
covariates (such as age or sex) on the disease-specific mortality from their impact on the ‘natural’
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population mortality, (ii) to estimate the impact of covariates specifically related to the disease, and (iii)
to consider as disease-specific deaths those indirectly due to the disease (in addition to those directly due
to the disease), such as the deaths due to treatment complications or suicide.

The objective of the present work was to analyze jointly the recurrence process and the disease-specific
mortality process using population-based data with no information on the causes of death. The paper is
organized as follows: in Section 2, we introduce the ‘classical’ joint model for recurrence and overall
mortality, the excess mortality hazard model, and the new joint model (NJM) we propose to estimate
the recurrent event process and the disease-specific mortality process. In Section 3, we summarize the
results of simulation studies that evaluate the accuracy of the estimators. In Section 4, we present an
illustration using French population-based data on colon cancer, and then we conclude with a discussion
concerning the findings of the study and an outline of further developments.

2. Method

2.1. The joint frailty model for recurrence and overall mortality processes

Let Ci and Di be the times to censoring and death for subject i (i D 1; : : : ; N /, respectively,
Ti D min.Ci ;Di / the follow-up time, and �i D I.Di 6 Ci / the failure indicator, equal to 1 if sub-
ject i dies and 0 otherwise. Let tij be the j th time to a recurrence since the study entry for subject i
(j D 1, : : :, ni / and ıij the recurrent event indicator at tij, equal to 1 if a recurrent event is observed and
0 otherwise. According to the model of Liu et al. [20], herein called the classical joint model (CJM), the
hazards of recurrence r.t/ and overall mortality �.t/ are

ri .t; xi ; wi /D r0.t/ exp.“xi Cwi /

�i .t; xi ; wi /D �0.t/ exp.’xi C �wi /
(1)

The effects of covariates xi on each hazard are assumed possibly different, equal to “ and ’ for recur-
rence and mortality, respectively, and wi is the random effect linked to the i th patient. The frailty term
is defined as ui D exp.wi / for the i th patient and may be considered as a latent variable that reflects
the ‘health status’ of patient i . The correlation between the times to the recurrent events relative to a
given patient i is introduced by the frailty parameter ui . Moreover, the frailty term ui is shared by the
hazards of recurrence and mortality; it allows taking into account the possible informative censoring of
the recurrent event process by death considering that the two processes are interdependent. We assume
that the random-effect wi follows a Normal distribution with mean 0 and variance � . In this case, frailty
ui follows a lognormal distribution [14].

In the model of Huang and Wang [22], � was set to one, implying identical effects of frailty on the
hazard for recurrences and the hazard for death. In the CJM, parameter � provides a greater flexibility
(versus the Huang and Wang model) because the frailty parameter may have a different impact on each
hazard. A parameter � estimated close to 0 means that the mortality hazard �.t/ does not depend on the
frailty; thus, death (or another terminal event) is not informative for the recurrent events. In other words,
conditional on the covariates, the two hazards r.t/ and �.t/ are not associated. When � D1, the effect
of the frailty is identical for the recurrent events and the terminating event. When � is estimated greater
than zero, recurrence and death hazards are positively correlated; a higher frailty will result in a higher
risk of recurrence and a higher risk of death. On the other hand, when � is negative, the hazards of recur-
rence and death are negatively correlated. Note that the interpretation of parameter � makes sense only
in presence of heterogeneity, that is, when the variance of the random effects is significantly different
from zero. In the CJM, a � significantly different from zero (by a unilateral Wald test) and a � nonsignif-
icantly different from 0 (by a classical Wald test) indicate that death and recurrent event processes are
independent but that an inter-patient heterogeneity exists, probably because of the recurrent events.

In the CJM, it is assumed that death prevents the observation of new recurrences, but on the contrary,
censoring (such as loss of follow-up) does not interrupt the occurrence of recurrence; these recurrences
are simply not observed. In other words, the intensity functions at time t for both recurrent and terminal
event processes are modeled given that the individual is still alive at that time Di > t . This assumption
is different from that of Ghosh and Lin or that of Huang and Wang [22, 28]; in the latter approaches, the
authors assume that recurrence is a latent process (analogous to latent failure times within the context of
competing risks) that continues to increment even if the patient dies.

However, informative censoring is more probably due to the disease-specific mortality process than
to the overall (i.e., all-cause) mortality process. In our example, as in many population-based studies,
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the cause of death is unknown; this is why a proper analysis requires the use of the excess mortality
hazard approach.

2.2. The excess mortality hazard approach

In this approach, the overall mortality hazard, �, is split into an excess mortality hazard, �C, and a
population (or expected) hazard, �P

�.t; ai ; xi ; zi /D �C.t; xi /C �P .ai C t; zi / (2)

where t is the time elapsed since diagnosis, ai the age at diagnosis of patient i , xi a vector of covariates,
and zi a vector of population characteristics [26, 29]. The population hazard �P .ai C t; zi / in Equation
(2) is assumed known; it is usually quantified on the basis of vector zi (generally age, sex, place of res-
idence, etc.) and may be obtained from national statistics institutes. In the seminal paper of Estève and
others, the excess mortality hazard was modeled by a PH model: �C.t; xi /D �0.t/ exp.“xi /, with �0.t/
constant within pre-specified intervals of follow-up [26]; this model will be referred to hereafter as the
‘marginal model’ (MM).

2.3. A joint frailty model for recurrence and disease-specific mortality processes

2.3.1. The new joint model. The parametric NJM we propose combines the CJM (Equation 1) and the
excess hazard approach (Equation 2). It may be written as

ri .t; xi ; wi /D r0.t/ exp.“xi Cwi /

�i .t; xi ; wi ; ai /D �0.t/ exp.’xi C �wi /C �P .ai C t; zi /
(3)

In this model, �0.t/ exp.’xi C �wi / represents the excess mortality hazard that may be interpreted
as the disease-specific mortality hazard. We assume that the correlation induced by the shared random
effect wi is here between the recurrence process and the disease-specific mortality process (e.g., cancer-
related mortality when the work is on a particular cancer). As in the CJM, parameter � allows a great
flexibility, and we assume that wi follows a Normal distribution with mean 0 and variance � .

2.3.2. The estimation procedure. The likelihood of the NJM may be written as the product of two terms,
one for recurrence

�
lRi
�

and one for death
�
lDi
�
. Denoting ‚ D .r0.:/; �0.:/;’;“; �; �/ the unknown

parameters and f� .wi / the distribution of the frailty, the contribution of patient i to the likelihood is

Li .‚/D

Z
lRi l

D
i f� .wi /dwi (4)

where

lRi D

niY
jD1

˚
r0.tij/ exp.“xiCwi /

�ıij exp

2
4�

TiZ
0

r0.s/ exp.“xiCwi /ds

3
5

lDi Df�0.Ti / exp.’xiC�wi /C�P .aCTi ; zi /g
�i exp

2
4�

TiZ
0

f�0.s/ exp.’xiC�wi /C�P .aCs; zi /gds

3
5

The full likelihood is then expressed as the product of the individual contributions to the likelihood:

L.‚/ D
NQ
iD1

Li .‚/. The last term in lDi

 
i.e., exp

"
�
TiR
0

�P .aC s; zi /ds

#!
does not depend on the

unknown parameters; thus, it can be omitted from the full likelihood.
As detailed in Equation (4), when the baseline hazards of recurrence and disease-specific mortality are

left unspecified (e.g., in a semi-parametric setting), the contribution of each individual to the likelihood
does not take a simple form. However, the estimation procedure is greatly simplified by assuming para-
metric forms for the baseline hazards r0.t/ and �0.t/, for example, piecewise constant functions [30]. In
our approach, in order to use continuous functions instead of piecewise constant functions, we modeled
the log of the baseline hazards using cubic B-splines. A cubic regression spline is a smooth piecewise
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polynomial function, which is continuous and has continuous first two derivatives throughout its finite
support interval, including at the knots, where the adjacent polynomial pieces join each other [31, 32].
We used one knot located at 1 year, but the degree of the splines and the number and positions of the
knots can be easily changed. Indeed, the user can either choose another knot location, on the basis of
substantive knowledge about the disease process being modeled or, in the absence of such knowledge,
may locate the interior(s) knot(s) at the quantile(s) of the sample distribution of uncensored event times

[31, 32]. The cumulative baseline hazards R0.t/ D
tR
0

r0.x/dx and ƒ0.t/ D
tR
0

�0.x/dx can be derived

by splitting the follow-up time into small intervals and using Cavalieri-Simpson approximation [27,33].
The first expression in (4) involves also an integral with respect to the random effectwi that greatly com-
plicates the derivation of its analytical form and implies the use of numerical methods to approximate it.
When a Normal distribution for wi is considered, this approximation can be made using the adaptative
Gaussian quadrature. The estimated covariance matrix of the parameter estimates was computed as the
inverse Hessian matrix. The implementation of the adaptative Gaussian quadrature is incorporated in
procedure proc nlmixed of (SAS) software; an example of the (SAS) code that fits the NJM is supplied
in Appendix A.

3. Simulation studies

3.1. Data generation, simulation designs, and analysis of the simulated data

We performed simulation studies to evaluate the performance of the NJM and compare it with the CJM
under different scenarios. Briefly, in each scenario, the data were simulated using the NJM with a con-
tinuous covariate x1 (e.g., age, uniform between 50 and 90 years), a binary covariate x2 (e.g., sex, coded
0 or 1, each with probability 0.5), and constant baseline hazards equal to 0.5 and 0.2 for r0.t/ and �0.t/,
respectively. We assumed no effect of x1 (ˇ1 and ˛1 equal to 0) but an effect of x2 (ˇ2 and ˛2 equal to 1)
on both hazards, r0.t/ and �0.t/, respectively. We generated wi from a Normal distribution with mean
0 and variance � . The differences between scenarios were linked to different values of parameters .�; �/
assumed to be equal to (0,1), (0.5,1), (1,1), or (1,2). In an additional scenario, we simulated an ‘older
population’, with an age distribution following a uniform law between 70 and 90 years and (�; �/ equal
to (1,1).

The recurrence gap times and the disease-specific times to death were generated using the inverse
transform method [34]. The recurrence calendar times are then deduced from the simulated gap times
[23]. The expected time to death was simulated assuming a yearly piecewise exponential law obtained

Table I. Mean of the estimates, coverage probability (CP), empirical standard errors
(SE), and mean of the standard errors (mean SE) in two scenarios using the new joint
model and the classical joint model.

New joint model Classical joint model

Parameter Empirical Mean Empirical Mean
(True value) Mean CP (%) SE SE Mean CP (%) SE SE

Scenario 1
ˇ1.0/ �0:010 93.4 0.059 0.057 0.007 93.8 0.058 0.056
ˇ2.1/ 1.001 93.8 0.143 0.136 0.995 94.2 0.141 0.134
˛1.0/ �0:030 92.6 0.082 0.078 0.073 79.8 0.071 0.067
˛2.1/ 1.019 95.6 0.188 0.193 0.974 94.6 0.164 0.170
�.1/ 1.058 97.0 0.167 0.174 0.961 92.4 0.149 0.157
�.1/ 0.993 94.2 0.152 0.151 0.963 92.4 0.146 0.145
Scenario 2
ˇ1.0/ �0:013 95.2 0.114 0.115 0.024 94.4 0.111 0.113
ˇ2.1/ 0.995 93.0 0.144 0.137 0.982 93.4 0.141 0.135
˛1.0/ �0:078 93.0 0.174 0.165 0.155 77.0 0.139 0.131
˛2.1/ 1.023 95.0 0.212 0.204 0.917 90.8 0.170 0.163
�.1/ 1.065 96.6 0.191 0.181 0.903 83.4 0.160 0.151
�.1/ 0.999 92.2 0.166 0.153 0.950 89.6 0.154 0.143

Scenarios 1 and 2 simulate age distributions 50–90 and 70–90 years, respectively.
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from the life table of the general population for each patient of age x1 and sex x2. The final time to
death was then obtained as the minimum between the censoring time (fixed at 5), the time to ‘’death due
to cancer’, and the expected time to death. The corresponding failure indicator �i equals 1 in case of
death of subject i (whatever the cause) or 0 otherwise. For each scenario, we generated 500 independent
random samples with 500 patients each.

Each simulated sample was analyzed with the NJM and the CJM using cubic B-splines for the baseline
hazards of recurrence and mortality processes.

3.2. Simulation results

We report here the results of only two scenarios where the parameters (�; �/ are equal to (1,1), but the
age distributions of the populations are different (between 50 and 90 years for scenario 1 and between
70 and 90 years for scenario 2) (Table I). The results of the other scenarios are given in Appendix B.

The approach that used the NJM had good performances in each scenario, with a very small bias and
a coverage probability (CP) close to 95% for each parameter (Table I and Appendix B). The mean of the
standard errors (SEs) was also close to the empirical SE of each parameter. However, when we did not
take into account the population mortality and used the CJM, we observed that the parameter estimates
for the mortality hazard were biased, especially in scenario 2 (lower part of Table I), and that the CPs
were less than 95%. The estimates of parameters � and � were also biased, and the CP was far from
95%. As expected, the parameter estimates associated with the recurrence process were well estimated
with either the CJM or the NJM.

4. Application

4.1. Description of the dataset and model assumptions

To illustrate our approach, we present the results obtained with population-based data on colon cancer
patients from FRANCIM, the French network of cancer registries. The dataset we used stems from a
‘high-resolution study’ of nine French cancer registries and consists of 290 stage 3 colon cancers diag-
nosed in 1995. All the patients had undergone curative surgery and were followed-up for 5 years at which
end they were censored if still alive. The covariates used were sex and age at diagnosis. The population
mortality hazards �P by sex, age, year, and Département (French administrative area) were obtained
from the Institut National de la Statistique et des Études Économiques.

In this dataset, there were as many men as women and nearly half of the patients were 75 years old
or more (Table II). Over 5 years of follow-up, there were 158 deaths and 138 recurrences occurred in
106 patients. On average, the recurrences occurred more frequently in men than in women. The overall
survival at 5 years after diagnosis was the same in men and women, about 45%. There were marked
differences between age classes; the recurrences were more frequent among the youngest than among
the oldest patients (on average, 0.55 vs. 0.36), and the overall survival was 80% in the youngest age
class versus 33% in the oldest age class (Table II). Over the 5 years of follow-up, the incidence rate of
recurrence was the highest in patients aged 55 to 65 years (21.64 per 100 person-years), but it decreased
thereafter to reach 13.14 per 100 person-years in patients aged 75 years and older.

Table II. Description of the data on colon cancer patients.

Average number Overall survival Annual incidence
of recurrences at 5 years Number of Person- rate of recurrence

Covariates N (%) (min–max) (standard error)� recurrences years (per 100 person-years)

Sex
Men 145 (50%) 0.52 (0–4) 0.44 (0.04) 75 483 15.53
Women 145 (50%) 0.43 (0–3) 0.45 (0.04) 63 458 13.76
Age (years)
15–45 11 (4%) 0.55 (0–3) 0.80 (0.13) 6 47 12.77
45–55 18 (6%) 0.33 (0–2) 0.78 (0.22) 6 81 7.41
55–65 45 (16%) 0.82 (0–4) 0.57 (0.07) 37 171 21.64
65–75 80 (28%) 0.50 (0–2) 0.44 (0.06) 40 269 14.87
75 and older 136 (47%) 0.36 (0–2) 0.33 (0.04) 49 373 13.14
�Using the Kaplan–Meier method.
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In the models fitted here, we modeled the baseline hazards for recurrence and death using cubic B-
splines with one knot fixed at 1 year after diagnosis. This choice was guided by the fact that more
recurrent events are usually expected during the first years of follow-up than during the other periods,
and also more deaths are mainly due to post-surgical mortality [35]. For the frailty distribution, we
assumed that wi follows a Normal distribution with mean 0 and variance � . We used SAS software with
procedure proc nlmixed, and the adaptative Gaussian quadrature was run with 100 quadrature points.

To test whether the variance of the random effect was different from zero, that is, H0 W � D 0 vs. H1 W �
> 0, the p-value from a Wald test was used. Because zero is the lower bound of � , a unilateral Wald test
was used, which is equivalent to a square Wald test with a half-half mixture of zero and chi-square with
1 degree of freedom [36].

4.2. Results

The estimated parameters (with the corresponding p-values) obtained with the NJM are shown in
Table III (second and third column). Covariate sex had no significant prognostic effect on the hazards
of recurrence and disease-specific mortality, whereas age had an important prognostic effect on both

Table III. Parameter estimates relative to the recurrence hazard and the disease-specific or overall mortality
hazard for colon cancer patients using the new joint model, the classical joint model, and the marginal model.

New joint model for Classical joint model for
recurrence and disease-specific recurrence and overall

mortality processes mortality processes Marginal model

Covariates ˇ (SE) p-value ˇ (SE) p-value ˇ (SE) p-value

Recurrence
Men 0.04 (0.39) 0.92 0.12 (0.37) 0.74 — —
Age 0.053 (0.018) <0.01 0.067 (0.018) <0.01 — —

Disease-specific mortality
Men �0:01 (1.10) 0.99 — — 0.03 (0.22) 0.93
Age 0.242 (0.061) <0.01 — — 0.032 (0.010) <0.01

Overall mortality
Men — — 0.42 (1.17) 0.72 — —
Age — — 0.365 (0.109) <0.01 — —

� 6.98 (1.51) <0.01 6.73 (1.43) <0.01 — —
� 2.86 (0.47) <0.01 3.40 (0.93) <0.01 — —
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Figure 1. Hazards for women aged 70 years with the frailty parameter wi equal to 0 for the recurrence process
(left panel) and for the mortality process (right panel) using the classical joint model (dashed lines) or the new
joint model (bold lines). Notice that the bold line in the right panel corresponds to the excess mortality hazard
obtained with the new joint model. The marginal disease-specific baseline mortality hazard that corresponds to

women aged 70 years (using the marginal model) is plotted in the right panel (dotted line).
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hazards, younger people having better prognoses. The variance of the frailty parameter � was highly
significant using a unilateral Wald test (p < 0:01), and parameter � was estimated at 2.86, which implies
that the recurrence process and the disease-specific mortality process were positively associated.

Figure 1 shows the baseline hazards of recurrence and disease-specific mortality in women aged
70 years with wi equal to zero. According to the NJM (bold line), the baseline hazard for recurrence
reached a maximum between 2 and 4 years after cancer diagnosis, whereas the baseline hazard for
disease-specific mortality increased with the time elapsed since diagnosis.

We also fitted the NJM assuming a gamma distribution for the frailty parameter ui (detailed results
not shown). When a gamma distribution is assumed, Liu et al. suggest to adapt the estimation procedure
described earlier by reformulating the likelihood [37]. The estimated parameters for the covariate effects
were quite close to each other (results not shown). The variance of the frailty parameter � and parameter
� were also highly significant (p < 0:01 for each one). These comparisons underline the robustness of
the method against misspecification of the frailty distribution.

4.2.1. Comparison between the classical and the new joint models for recurrence and mortality pro-
cesses. The results of fitting the CJM are shown in Table III (fourth and fifth column) and Figure 1.
As with the NJM, covariate sex had no significant prognostic effect on either process, but age had an
important prognostic impact on both (Table III). The NJM reduced the impact of age on disease-specific
mortality because we took into account the mortality due to other causes, which increases with increasing
age. Concerning the shared frailty parameter, we observed a slightly higher variance � with NJM than
with CJM (� D6.98 vs. 6.73 with the CJM); a better modeling of the mortality hazard at the individual
level has apparently led to a better distinction between individuals. This indicates a higher correlation
between recurrence and disease-specific mortality than between recurrence and overall mortality. As
expected, the overall mortality (obtained with the CJM) was higher than the disease-specific mortality
obtained with the NJM (Figure 1, right panel).

4.2.2. Marginal versus conditional estimates of the hazard of disease-specific mortality. It is important
to underline that the estimated baseline hazards and the covariate hazard ratios derived from the NJM are
conditional estimates (conditional on the frailty parameter) as opposed to those obtained with the MM
(population-averaged). Thus, their interpretation will be clearly different. To enlighten this point, we
fitted the MM to the colon cancer data. For this analysis, only death or censoring times were considered
(the times to recurrence were not), and the baseline hazard was modeled using a cubic B-spline with
one knot at 1 year. The marginal hazard ratios (Table III, sixth and seventh column) for men (versus
women) were estimated to 0.03 (SE D 0:22) and to 0.032 for a 1-year increment in age (SE D 0:01).
The marginal disease-specific baseline mortality hazard is shown in Figure 1 (right panel.)

4.2.2.1. Differences in interpretation of the estimates

The marginal baseline hazard of the disease-specific mortality obtained with the MM was far different
from the conditional baseline hazard of the disease-specific mortality obtained with the NJM. This fact
is well known and may be explained by a ‘selection phenomenon’ over time [38, 39]; patients with high
frailties are more prone to early death, whereas robust patients will still be alive at end of the follow-
up. In other words, with ongoing time, the marginal (or population-averaged) hazard will approach the
hazard of the robust subgroup of patients.

The interpretation of the parameters associated with the covariates will also be different between the
NJM and the MM. In the NJM, assuming constant over time, the conditional hazard ratio for each
covariate does not mean assuming constant the marginal hazard ratio derived from the conditional
model [14, 39]; the assumption of a PH ratio at the individual level leads to a marginal time-dependent
hazard ratio.

4.2.2.2. Comparison between the marginal disease-specific survivals obtained with the marginal model
and the new joint model

We compared the marginal disease-specific survival obtained with the MM with the one obtained with
the NJM by integrating out the frailty. In women aged 70 years, the marginal disease-specific survival

obtained with the NJM is defined by
C1R
�1

exp Œ�wƒ0.t/� f� .w/dw. However, no simple analytical form

of this expression can be derived when f� is the normal density. Thus, we used the Monte Carlo inte-
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Table IV. Marginal disease-specific survivals for colon cancer patients at 1,
3, and 5 years as derived from the marginal model and the new joint model.

Marginal model New joint model

Subgroup 1 year 3 years 5 years 1 year 3 years 5 years

Women, 60 years old 92.9 76.1 67.3 94.2 77.1 66.5
Men, 60 years old 92.7 75.7 66.8 94.3 76.9 66.5
Women, 70 years old 90.1 68.2 57.4 89.6 66.4 54.3
Men, 70 years old 89.9 67.7 56.8 89.8 66.2 54.3
Women, 80 years old 86.4 58.5 45.9 82.9 54.5 41.7
Men, 80 years old 86.2 57.9 45.2 82.8 54.5 41.7
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Figure 2. Martingale residuals of the new joint model for recurrence (left panel) and excess mortality (right
panel). The solid lines correspond to lowess estimates.

gration method [40] with 100,000 values for the random effect wi generated from a normal distribution
with mean 0 and variance 6.98 (i.e., the estimated variance � of wi , see Table III). The results for dif-
ferent subgroups are shown in Table IV (fifth to seventh column). The marginal disease-specific survival
estimates at 1, 3, and 5 years obtained with the MM were close to the ones obtained with the NJM
(Table IV). This indicates a good agreement between the MM and the NJM on these colon cancer data.

4.2.3. Assessment of the goodness of fit. To assess the goodness of fit of the NJM, we used Mar-
tingale residuals. Martingale residuals may be easily calculated by the ‘predict’ statement of proc
nlmixed in SAS, the empirical Bayes estimates being provided for the random effects. Using the NJM
with time-independent covariates, the martingale residuals of the recurrence process are defined as

MR
i D ıRi �

OR
�
Ti ; xi ; O“; Owi

�
, where ıRi represents the total number of recurrent events for patient

i and OR
�
Ti ; xi ; O“; Owi

�
the estimated cumulative hazard of recurrence. For the mortality process, the

martingale residuals are defined asMD
i D�i �

Oƒ.Ti ; xi ; O’; Owi ; O�/ [41]. The particularity of the NJM is
that a component of the estimated cumulative mortality hazard, Oƒ.Ti ; xi ; O’; Owi ; O�/, is constrained to be
equal to the expected mortality of the population, ƒP .ai C Ti ; zi / [42]. The martingale residuals with
respect to age are shown in Figure 2; there is no clear pattern regarding age at diagnosis for recurrence
and excess mortality hazards as derived from the NJM.

5. Discussion

The NJM makes it possible to estimate jointly the hazard of recurrence and the hazard of disease-specific
mortality without needing the cause of death. This model provides more accurate parameter estimations
than the CJM by taking into account the expected mortality included in the overall mortality and allows
separating the covariate effects on the disease-specific mortality from their effects on the expected mor-
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tality. The correlation between the hazard of recurrence and the hazard of disease-specific mortality
is introduced through a shared frailty parameter that follows a lognormal distribution. We checked the
robustness of the estimated covariate effects with a gamma distribution of frailty; the estimated effects of
the covariates on recurrence and disease-specific mortality were close to each other (results not shown).
Within the context of joint modeling for longitudinal processes (such as the change over time of a
biomarker) and survival, some approaches have been proposed to model jointly the two processes in
the presence of competing risks, when the cause of death is known [43,44]. The approach proposed here
makes it possible to use the excess hazard method to estimate the hazard of disease-specific mortality
when the cause of death is unknown (or badly reported). Moreover, the NJM gives new insights into
disease-specific mortality; at the population level, the hazard of disease-specific mortality is the result of
(i) an increasing hazard of disease-specific mortality at the individual level and (ii) a selection of robust
patients over time.

For identifiability reasons, the analyst must use a restriction on the parameters of the distribution
of the random effect wi or on the parameters of the distribution of frailty ui . We used the restriction
E.wi / D 0, and in this case, because E.exp.wi // ¤ exp.E.wi //, the baseline hazard is not the ‘mean
hazard’; it should be interpreted as the hazard of a patient with wi D 0. Another possibility would be to
use a restriction on the mean of frailty ui ; E.ui /D 1. This would have the advantages that the baseline
hazard will correspond to the mean hazard and that the results will be directly comparable with those
obtained with other shared frailty models (e.g., the shared gamma frailty model). However, we have
chosen the parameterization E.wi / D 0. With this choice, it is assumed that the random effects have a
Gaussian distribution and that they act on the linear predictor as in the generalized linear mixed models.
Because of its similarity with the ‘classical’ mixed models, this parameterization is more easily under-
standable by the researchers who are not familiar with survival analyses and frailty models. Note that
this restriction choice has no impact on the estimated parameters [45].

The estimation step was performed with procedure proc nlmixed in SAS software, and the numerical
integration method chosen was the adaptative Gaussian quadrature with 100 quadrature points. Some
authors suggested that 5 to 10 quadrature points are sufficient to obtain accurate parameter estimates
with the adaptative Gaussian quadrature method [30, 46]. In the present work, we used nevertheless
100 quadrature points. This was because the log likelihood increased importantly between 10 and 20
quadrature points and continued to increase up to about 60 quadrature points before stabilizing. With
100 quadrature points on a dataset of 290 patients and using a computer with Pentium CPU dual-core of
2.6 GHz each, the algorithm took about 10 min to converge.

The time scale used to analyze recurrent events may be the gap times between consecutive events or
the times to the events since the study started (calendar time). The choice of the scale depends on the
objective. The gap timescale is based on the idea that the clock restarts after each event. In this work,
we used the calendar timescale to obtain information on the progression of the process over time since
diagnosis of cancer [47], but the NJM can be easily adapted to a gap timescale.

In the present work, we have chosen the context of intensity-based models to analyze recurrent events.
Intensity at a given time t describes the probability of a new event within an infinitesimal interval
[t; t C �t [, given an individual’s history of events [1, 48]. Other authors have proposed approaches
based on the rate function of a Poisson process, which can be interpreted as the average risk in the pop-
ulation without conditioning on the history of the events [19, 49, 50]. In case a terminal event precludes
further recurrence, some authors proposed quantities derived from the rate function that model the recur-
rent event process after the terminal event [19, 51]. For example, the adjusted rate function quantifies
the expected number of events before the time of death; otherwise, the survivor rate function quanti-
fies the expected number of events among those subjects who have not experienced the terminal event.
Although these quantities give useful indicators to help in resource use (estimates of the total number of
events experienced in a patient’s lifetime), they are not recommended when the focus of the study is the
covariate effects (e.g., treatment) [19, 52].

The statistical inference based on the joint models presented in the present article leads to problems
related to inference in the presence of a nuisance parameter [53]. When the gamma parameter equals
zero, there is no relationship between the disease-specific mortality process and the recurrence process.
Moreover, the interpretation of the gamma parameter is possible only when the variance of the random
effect is different from zero, that is, gamma vanishes when the variance of the random effect is zero. As
a consequence, the gamma parameter and the variance of the random effect cannot be separated from
each other, and the statistical inference should take this particularity into account. Several approaches
have been proposed to solve this problem. Conniffe has proposed a score test after replacing the nuisance
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parameter by its maximum likelihood estimate under the alternative hypothesis [54]. Hansen has used a
transformation based on a conditional probability measure and simulation to determine the critical val-
ues of the test [55]. Davies has proposed to maximize the statistics of the test over the possible values
of the nuisance parameter [56, 57]. This specific problem is beyond the scope of this article but future
works should be carried out to propose a valid statistical test for the joint models detailed here.

In our analysis, an independent random patient effect was assumed constant over the follow-up for
each patient. However, in some cases, this assumption seemed too restrictive; more realistic were mod-
els with time-varying frailties [58]. Frailties may be modeled as time series with a correlation described
by an autoregressive structure [59, 60]. However, these models may be cumbersome to calculate and
difficult to fit.

Another interesting extension would be to fit the NJM using a penalized likelihood to have smooth esti-
mations of the baseline hazards. The R-package frailtypack was developed to analyse recurrent events
and overall mortality [23, 61, 62]; extending this approach to the context of disease-specific mortality
(rather than overall mortality) would be interesting. Because the number and the positions of the knots
are an issue in the NJM, this extension will highlight the benefit of the penalized-likelihood approach.
To test the sensitivity of our results to the model specifications, we performed supplementary analyses
using B-splines with various number and locations of the knots for the baseline hazards of recurrence and
excess mortality. These supplementary NJMs were used with the real data and with the simulated data.
The details of this sensitivity analysis are presented in Appendix B. The analysis showed that the results
are robust to different choices of knots. This sensitivity analysis does not provide a general guideline for
choosing the number and the locations of the knots for B-spline functions. One may use some tools such
as cross-validation or Akaike information criterion to select the more parsimonious model. However,
it should be noted that a cubic B-spline with one interior knot allows for up to three inflection points,
offering sufficient flexibility for most real-life applications while limiting the risk of serious over-fit
bias [32, 35, 63].

The main limitation of the shared frailty model is that it cannot account for two heterogeneous but
independent processes. A more general model is needed, and one possibility would be to use a corre-
lated frailty model in which two random effects are used to correlate the recurrence and the mortality
excess hazards [43, 45, 64]. A bivariate normal distribution may be used for these random effects with
a correlation parameter that takes into account the correlation between the two processes. When the
two processes are heterogeneous but independent, this correlation parameter should be estimated close
to zero. However, fitting correlated frailty models is challenging and may lead to identifiability and
computational problems, in particular when there are no repeated observations in one of the processes
(here, the mortality process). With our real data, we tried to fit a correlated frailty model where the
hazard of recurrence was defined by ri .t; xi ; wi / D r0.t/ exp.“xi C w1i / and the mortality hazard
by �i .t; xi ; wi ; ai / D �0.t/ exp.’xi C w2i /C �P .ai C t; zi /. In this model, the parameters .w1; w2/
were assumed to follow a bivariate normal distribution with mean (0,0) and variance-covariance matrix

†D

�
�21 ��1�2

��1�2 �22

�
. To avoid computational problems, we followed some hints detailed in a pub-

lication by Kiernan et al. [65]. The initial values used for the covariate parameters and baseline hazards
were obtained from a simpler model assuming no correlation (parameter � D 0/, the initial values for
the parameters of the variance-covariance matrix were obtained using a grid search, and the variance-
covariance matrix was reparameterized using the Cholesky root. We checked our estimation procedure
with a short simulation study (data not shown) and observed that most of the parameters were estimated
with a very small bias and with a coverage rate close to 95%, except for the correlation parameter, which
was estimated equal to 0.55 on average (true value 0.5) and had a coverage rate equal to 79%. Unfortu-
nately, we never reached convergence with the real data because the correlation parameter was always
estimated at the boundary of the parameter space. In a slightly different context, this problem was also
encountered by Zahl [66] who decided to fix the correlation parameter and then re-estimated the param-
eters. We report in Appendix C such an exploration on the real data using a correlated frailty model
and fixed correlation parameters at different values. Interestingly, the log likelihood decreased when the
correlation increased, which can be interpreted as a better fit of the correlated frailty model when the
correlation is fixed at a high level (� D 0:8). However, this is clearly unsatisfactory because the other
parameter estimates change (Appendix C), and further research is needed. This convergence problem
was not always reported by the researchers who used correlated frailty models because, in many cases,
the studies concerned data on twins and it is then natural to assume that the two frailties of each pair have
the same variance (�1 D �2/, which simplifies the estimation procedure [15, 45, 67]. The modified EM
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algorithm proposed by Xue and Brookmeyer seems to work well within the context of semi-parametric
models (no computational problems reported by the authors) [68]. Thus, more research should be carried
out to propose a modified EM algorithm within the context of correlated frailty models using B-splines.
Another interesting direction would be to evaluate the Monte Carlo Markov Chain method in estimating
the parameters of the correlated frailty model [15].

Appendix A. Details of the SAS code used for fitting the new joint model

The SAS code assumes that the analyst has the data (called temp here) in the following format:

Id Age Sex time type_event Age� event MUA

1 51 1 0:46190 1 51 0:0063044553
1 51 1 1:23010 1 52 0:0067074528
1 51 1 1:80755 3 52 0:0067074528
2 63 1 1:92888 1 64 0:0177344073
2 63 1 2:26143 0 65 0:0187224403
3 58 0 2:76017 0 60 0:0047713446

Column Id stands for the patient’s identification number, and Age and Sex stand for covariates age
at diagnosis and sex. Column time shows the time to the event in years and column type_event
the type of event (1 for recurrence, 3 for death and 0 for censoring). Column Age� event indicates
the age at the occurrence of the event. Column MUA shows the population hazard; it corresponds to the
population hazard for people with sex equal to covariate Sex and age equal to Age� event.

Three steps are necessary for parameter estimation:

- The first step consists in splitting the follow-up time for each patient; this will be used for the
Cavalieri-Simpson approximation. In this example, the data are split into intervals of 0.2 years with
a maximum follow-up of 5 years, which makes 25 distinct intervals.

- The second step consists in calculating the values of the B-splines for each patient’s time to
event; these values allow calculating the instantaneous baseline hazards and the cumulative baseline
hazards using the Cavalieri-Simpson approximation. Calculating the values of B-splines requires
version 9.2 of the SAS software with function bspline of procedure proc IML:

- The third step consists in estimating the parameters of the NJM using procedure proc nlmixed:

/* First Step: splitting of the data */
/* ################################# */

Data temp2;
Set temp;
Array split[25] split1-split25;
Array dur[25] dur1-dur25;
Array midp[25] midp1-midp25;

Do j=1 to 25;
split[j]=0.2*j;
dur[j]=0; *split[i]-0.1;
midp[j]=split[j]-0.1;

end;
Do j=1 to 25;

if time<=split[j] then do;
if j=1 then do; dur[j]=time; midp[j]=time/2; split[j]=time;

end;
else do; dur[j]=time-split[j-1]; midp[j]=split[j-1]+(time-

split[j-1])/2;split[j]=time; end;
j=25;

end;
else

if j=1 then do; dur[j]=0.2; midp[j]=0.1; end;
else do; dur[j]=split[j]-split[j-1]; midp[j]=split[j-1]+0.1;

end;
end;

run;
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/* Second Step: Calculating the values of the B-splines for each patient’s time
to event */
/* ##################################################################### */
/* In this example, we used cubic B-spline with one interior knot located at
t=1; so we need to define 3 additional boundary knots for the lower bound (at t=-
2, -1, 0) and 3 additional boundary knots for the upper bound (at t=6, 7, 8) */

proc iml;
USE temp2;
READ all var {id time};
knots = {-2 -1 0 1 6 7 8};
bsp = bspline(time, 3, knots);
CREATE base_bspline FROM bsp; APPEND FROM bsp;

quit;

Data base_bspline;
SET base_bspline;
rename COL1=bsp1 COL2=bsp2 COL3=bsp3 COL4=bsp4 COL5=bsp5;
aa=1;
run;

Data temp2;
SET temp2;
aa=1;
run;

Data temp3;
merge temp2 base_bspline;
by aa;
run;

data tpsbsp;
set temp2;
keep id time split1-split25 midp1-midp25;
run;

%macro cbase;
%do k=1 %to 25;
proc iml;
USE tpsbsp;
READ all var {split&k};
knots = {-2 -1 0 1 6 7 8};

bsp = bspline(split&k, 3, knots);
CREATE basesp_split&k FROM bsp; APPEND FROM bsp;

quit;

Data basesp_split&k; set basesp_split&k;
Rename col1=bsp1_split&k col2=bsp2_split&k
col3=bsp3_split&k col4=bsp4_split&k col5=bsp5_split&k;
aa=1;
Run;

proc iml;
USE tpsbsp;
READ all var {midp&k};

knots = {-2 -1 0 1 6 7 8};
bsp = bspline(midp&k, 3, knots);
CREATE basesp_midp&k FROM bsp; APPEND FROM bsp;

quit;

Data basesp_midp&k; set basesp_midp&k;
Rename col1=bsp1_midp&k col2=bsp2_midp&k col3=bsp3_midp&k col4=bsp4_midp&k
col5=bsp5_midp&k;
aa=1;
Run;
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Data temp3;
merge temp3 basesp_split&k basesp_midp&k;
by aa;
run;

%end;

%mend cbase;

%cbase;

/* Third step: estimating the parameters */

/* ####################################### */

proc nlmixed data=temp3 qpoints=10 ;
/* Starting values */
parms a0=0.5 a1=0 a2=0 a3=0 a4=0 b0=0.5 b1=0 b2=0 b3=0 b4=0
betaAge_Recur=0 betaSex_Recur =0 theta=0.5 betaAge_Surv=0
betaSex_Surv=0 gamma=0.5;
bounds theta >=0;

Array bsp1_split[25] bsp1_split1-bsp1_split25;
Array bsp2_split[25] bsp2_split1-bsp2_split25;
Array bsp3_split[25] bsp3_split1-bsp3_split25;
Array bsp4_split[25] bsp4_split1-bsp4_split25;
Array bsp5_split[25] bsp5_split1-bsp5_split25;

Array bsp1_midp[25] bsp1_midp1-bsp1_midp25;
Array bsp2_midp[25] bsp2_midp1-bsp2_midp25;
Array bsp3_midp[25] bsp3_midp1-bsp3_midp25;
Array bsp4_midp[25] bsp4_midp1-bsp4_midp25;
Array bsp5_midp[25] bsp5_midp1-bsp5_midp25;

Array bas_rec[25] bas_rec1-bas_rec25;
Array bas_dea[25] bas_dea1-bas_dea25;
Array split[25] split1-split25;
Array midp[25] midp1-midp25;
Array dur[25] dur1-dur25;

Do m=1 to 25;
if m=1 then bas_rec[m]=(exp(a0*bsp1_split[m] + a1*bsp2_split[m] +
a2*bsp3_split[m] + a3*bsp4_split[m] + a4*bsp5_split[m])+

exp(a0*0.1666667 + a1*0.7619048 + a2*0.07142857) +
4*exp(a0*bsp1_midp[m] + a1*bsp2_midp[m] +

a2*bsp3_midp[m] + a3*bsp4_midp[m] + a4*bsp5_midp[m]))/6;
else bas_rec[m]=(exp(a0*bsp1_split[m-1] + a1*bsp2_split[m-1] +
a2*bsp3_split[m-1] + a3*bsp4_split[m-1] + a4*bsp5_split[m-1])+

exp(a0*bsp1_split[m] + a1*bsp2_split[m] +
a2*bsp3_split[m] + a3*bsp4_split[m] + a4*bsp5_split[m]) +

4*exp(a0*bsp1_midp[m] + a1*bsp2_midp[m] + a2*bsp3_midp[m]
+ a3*bsp4_midp[m] + a4*bsp5_midp[m]))/6;

if m=1 then bas_dea[m]=(exp(b0*bsp1_split[m] + b1*bsp2_split[m] +
b2*bsp3_split[m] + b3*bsp4_split[m] + b4*bsp5_split[m])+

exp(b0*0.1666667 + b1*0.7619048 + b2*0.07142857) +
4*exp(b0*bsp1_midp[m] + b1*bsp2_midp[m] +

b2*bsp3_midp[m] + b3*bsp4_midp[m] + b4*bsp5_midp[m]))/6;

else bas_dea[m]=(exp(b0*bsp1_split[m-1] + b1*bsp2_split[m-1] +
b2*bsp3_split[m-1] + b3*bsp4_split[m-1] + b4*bsp5_split[m-1])+

exp(b0*bsp1_split[m] + b1*bsp2_split[m] +
b2*bsp3_split[m] + b3*bsp4_split[m] + b4*bsp5_split[m]) +

4*exp(b0*bsp1_midp[m] + b1*bsp2_midp[m] + b2*bsp3_midp[m]
+ b3*bsp4_midp[m] + b4*bsp5_midp[m]))/6;
end;

* base hazard and cumulative baseline hazard for recurrent events;
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base_haz_r=exp(a0*bsp1 + a1*bsp2 + a2*bsp3 + a3*bsp4 + a4*bsp5);

cum_base_haz_r=0;
Do m=1 to 25;
cum_base_haz_r= cum_base_haz_r + bas_rec[m]*dur[m];
end;

* base hazard and cumulative baseline hazard for death events;
base_haz_d=exp(b0*bsp1 + b1*bsp2 + b2*bsp3 + b3*bsp4 + b4*bsp5);

cum_base_haz_d=0;
Do m=1 to 25;
cum_base_haz_d= cum_base_haz_d + bas_dea[m]*dur[m];
end;

/* COVARIATES */
mu1= betaAge_Recur * Age + betaSex_Recur * Sex + w; /*
for recurrent event */
mu2= betaAge_Surv * Age + betaSex_Surv * Sex + gamma * w; /* for
death event */

loglik1=-exp(mu1) * cum_base_haz_r;
loglik2=-exp(mu2) * cum_base_haz_d;

if type_event=1 then loglik= log(base_haz_r) + mu1;
/*log likelihood for recurrent event */

if type_event=3 then loglik=loglik1 + log(base_haz_d*exp(mu2)+MUA) +
loglik2; /*log likelihood for excess death */
if type_event=0 then loglik=loglik1 + loglik2;

/*log likelihood for censoring */

model time ~ general(loglik);
random w ~ normal(0, theta) subject=id;
ods output ParameterEstimates=estimation FitStatistics=fit1
convergencestatus=convergence;

run;

Appendix B. Additional results of the simulation study and of the sensitivity
analysis regarding the different choices of knots for the baseline hazards

In the first part of this appendix, we report the results of the simulated scenarios not detailed in the
article. In the second part, we describe the analysis we conducted to explore the sensitivity of the param-
eter estimates to the number and the location of knots for the baseline hazards of recurrence and the
disease-specific mortality.

Additional results of the simulation study

Parameters (�; �/ are generated as equal to (0,1) in scenario S1, equal to (0.5,1) in scenario S2, and equal
to (1,2) in scenario S3. The other parameters are generated as described in the article. The results are
reported in Table B.1.

Sensitivity analysis

In order to test the sensitivity of our results to the model specifications, we performed a supplementary
analysis using B-splines and varying the number and positions of the knots for the baseline hazards of
recurrence and the disease-specific mortality.

Method
Three supplementary models were used.

(1.) In the first supplementary model (NJMv1), we assumed one knot at the median time of the observed
recurrence times (respectively, death times) for the baseline hazard of recurrence (respectively, the
disease-specific mortality).
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Table B.1. Mean of the estimates, coverage probability (CP), empirical standard errors (ESE), and
mean of the standard errors (mean SE) in three scenarios using the new joint model and the classical
joint model.

New joint model Classical joint model

Parameter (True value) Mean CP (%) ESE Mean SE Mean CP (%) ESE Mean SE

Scenario S1
ˇ1.0/ 0.001 95.4 0.056 0.057 0.001 95.0 0.057 0.057
ˇ2.1/ 0.999 94.6 0.134 0.132 0.999 94.6 0.134 0.132
˛1.0/ �0.030 92.0 0.063 0.062 0.062 79.2 0.055 0.054
˛2.1/ 0.999 94.4 0.146 0.145 0.948 94.0 0.130 0.129
�.0/ �0.002 94.8 0.108 0.102 �0.001 94.2 0.097 0.092
�.1/ 0.999 92.6 0.136 0.129 0.999 92.6 0.136 0.129
Scenario S2
ˇ1.0/ 0.001 95.2 0.057 0.056 0.010 94.4 0.058 0.055
ˇ2.1/ 1.014 96.6 0.127 0.133 1.009 96.0 0.126 0.133
˛1.0/ �0.024 91.8 0.066 0.065 0.074 74.4 0.057 0.057
˛2.1/ 1.025 94.2 0.163 0.157 0.970 93.6 0.144 0.139
�.0:5/ 0.532 94.6 0.117 0.114 0.481 94.0 0.107 0.104
�.1/ 0.991 93.4 0.137 0.131 0.982 92.8 0.135 0.129
Scenario S3
ˇ1.0/ �0.010 94.8 0.072 0.073 0.016 93.4 0.070 0.071
ˇ2.1/ 1.000 94.4 0.172 0.169 0.991 94.6 0.169 0.166
˛1.0/ �0.033 94.8 0.091 0.09 0.082 84.0 0.079 0.080
˛2.1/ 1.016 93.8 0.227 0.220 0.958 92.8 0.199 0.194
�.1/ 1.047 95.4 0.134 0.124 0.958 90.6 0.119 0.111
�.2/ 2.018 95.2 0.254 0.262 1.940 93.2 0.241 0.248

Table B.2. Results of the sensitivity analysis regarding the number and the locations of the B-spline knots
with simulated data and scenario 1: mean of the estimates, coverage probability (CP), Empirical standard
errors (ESE), and mean of the standard errors (mean SE) using supplementary models NJMv1, NJMv2, and
NJMv3.

Parameter
NJMv1 NJMv2 NJMv3

(True value) Mean CP (%) ESE Mean SE Mean CP (%) ESE Mean SE Mean CP (%) ESE Mean SE

ˇ1.0/ �0:010 93.2 0.059 0.057 �0:009 93.3 0.059 0.057 �0:009 93.4 0.059 0.057
ˇ2.1/ 1.001 93.8 0.143 0.136 1.002 93.7 0.143 0.136 1.001 94.0 0.143 0.136
˛1.0/ �0:030 92.6 0.082 0.078 �0:030 92.5 0.082 0.078 �0:030 92.4 0.082 0.078
˛2.1/ 1.019 95.6 0.188 0.193 1.020 95.5 0.188 0.193 1.02 95.6 0.188 0.193
�.1/ 1.058 97.0 0.166 0.174 1.058 96.7 0.167 0.174 1.058 97.2 0.167 0.175
�.1/ 0.993 94.0 0.152 0.151 0.994 94.1 0.153 0.151 0.992 94.0 0.152 0.151

(2.) In the second supplementary model (NJMv2), we assumed two knots at 1 and 3 years for the
baseline hazards of recurrence and the disease-specific mortality.

(3.) In the third supplementary model (NJMv3), we assumed two knots at the 33th and 66th percentiles
of the observed recurrence times (respectively, death times) for the baseline hazard of recurrence
(respectively, the disease-specific mortality).

Using these supplementary models, we re-analysed (i) the simulated data of scenario 1, that is, when
parameters (�; �/ are assumed equal to (1,1) and the age distribution of the population is between 50
and 90 years (see the main text of the article) and reported the results in Table B.2 and (ii) the real-data
example and reported the results in Table B.3.

Results

(i) The performances obtained with these supplementary models were very close to the ones obtained
using the NJM: there was a very small bias and a CP close to 95% with each parameter (Table B.2).
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Table B.3. Results of the sensitivity analysis regarding the number and the locations of the B-spline
knots for the parameter estimates relative to the recurrence hazard and the disease-specific mortality haz-
ard for colon cancer patients using supplementary models NJMv1, NJMv2, and NJMv3 (AIC : Akaike
information criterion).

NJMv1 NJMv2 NJMv3

Covariates and criteria ˇ (SE) p-value ˇ (SE) p-value ˇ (SE) p-value

Recurrence
Men 0.04 (0.40) 0.92 0.04 (0.40) 0.92 0.04 (0.40) 0.92
Age 0.054 (0.018) <0.01 0.053 (0.018) <0.01 0.053 (0.018) <0.01
Disease-specific mortality
Men �0.02 (1.11) 0.99 �0.01 (1.10) 0.99 �0.02 (1.10) 0.99
Age 0.245 (0.062) <0.01 0.242 (0.061) <0.01 0.241 (0.061) <0.01
� 7.06 (1.53) <0.01 6.98 (1.51) <0.01 6.99 (1.51) <0.01
� 2.87 (0.47) <0.01 2.86 (0.47) <0.01 2.85 (0.47) <0.01
Model selection criteria
�2*log likelihood 1316.7 1315.1 1315.1
AIC 1348.7 1351.1 1351.1

In each supplementary model, the mean of the SEs was also close to the empirical SE of each
parameter.

(ii) The parameter estimates with these supplementary models were very close to the ones obtained
using the NJM on real data.

Conclusion
Examining the results obtained with simulated data and real data, we conclude that the results are

robust to different choices of the number and the locations of the B-spline knots.

Appendix C. Additional results obtained using the correlated frailty model on the
real data after fixing the correlation parameter at different values

The following correlated frailty model was fitted on the real data example using SAS proc nlmixed:

ri .t; xi ; wi /D r0.t/ exp.“xi Cw1i /

�i .t; xi ; wi ; ai /D �0.t/ exp.’xi Cw2i /C �P .ai C t; zi /
(1)

Table C.1. Parameter estimates relative to the recurrence hazard and the disease-specific mortality hazard
for colon cancer patients using the correlated frailty model after fixing the correlation parameter at different
values (AIC: Akaike information criterion).

� fixed to 0 � fixed to 0.2 � fixed to 0.5 � fixed to 0.8

Covariates and
criteria ˇ (SE) p-value ˇ (SE) p-value ˇ (SE) p-value ˇ (SE) p-value

Recurrence
Men 0.097 (0.217) 0.66 0.086 (0.239) 0.72 0.071 (0.312) 0.82 0.053 (0.315) 0.87
Age 0.001 (0.009) 0.95 0.004 (0.01) 0.65 0.012 (0.012) 0.30 0.023 (0.013) 0.06
Disease-specific
mortality
Men �0:09 (0.368) 0.80 �0:10 (0.428) 0.823 �0:060 (0.494) 0.90 �0:023 (0.567) 0.97
Age 0.068 (0.020) <0.01 0.083 (0.022) <0.01 0.097 (0.030) <0.01 0.117 (0.030) <0.01
�21 0.783 (0.353) 0.03 1.190 (0.403) <0.01 1.758 (0.478) <0.01 2.666 (0.600) <0.01
�22 3.691 (1.967) 0.06 5.496 (2.181) 0.012 7.038 (5.010) <0.01 9.814 (3.576) <0.01
� — — — — — — — —
Model selection
criteria
�2�log likelihood 1507.9 1485.1 1446.3 1395.8
AIC 1539.9 1517.1 1478.3 1427.8
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where parameters .w1; w2/ are assumed to follow a bivariate normal distribution with mean (0,0) and

variance-covariance matrix † D

�
�21 ��1�2

��1�2 �22

�
. The other parameters are identical to those

described in the article.
The parameter � was fixed at different values, � 2 f0; 0:2; 0:5; 0:8g, and the parameter estimates

are reported in Table C.1. These values were chosen so as to represent no correlation (� D 0), a low
(�D 0:2), a moderate (�D 0:5), and a high (�D 0:8) correlation between the two processes.

We also report in Table C.1 the final log likelihood and the Akaike information criteria obtained after
convergence of the optimization algorithm.

It is interesting to see that the log likelihood decreases when the correlation increases. This can be
interpreted as a better fit of the correlated frailty model when the correlation is fixed at a high level. At
the same time, the variances of the random effect and their corresponding SEs for the recurrence and the
disease-specific mortality processes increase. As underlined in the paper, correlated frailty models are an
important extension of shared frailty models but further research is needed to deal with computational
issue and identifiability.
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