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Intended Learning Outcomes

At the end of this lecture, you should be able to

I Define and explain what is a flexible parametric hazard model
(FPM) and mention its advantages

I Interpret the results from a FPM applied in the relative survival
setting

I Appreciate and interpret time-dependent effects

I Fit a flexible parametric hazard model (FPM) using R (package
mexhaz) and Stata (command strcs )
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Regression Model 1/2

Some general thoughts on “what is a model”:

I From Wikipedia: A statistical model is a class of mathematical
model, which embodies a set of assumptions concerning the
generation of some sample data, and similar data from a larger
population. A statistical model represents, often in considerably
idealized form, the data-generating process.

I A simplification or approximation of reality (Burnham and
Anderson, 2002)

I A powerful tool for developing and testing theories by way of
causal explanation, prediction, and description (Shmueli, 2010)
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Regression Model 2/2

Different types of regression models depending on the main objective
(G. Shmueli, Statistical Science 2010, “To Explain or to predict?”):

I Descriptive modelling: summarising or representing the data
structure in a compact manner

I Explanatory modelling: applying statistical models to data to
explain an association between variables and an outcome, and
eventually testing causal explanations/hypotheses

I Projection (Predictive modelling): applying a statistical model
to data for the purpose of predicting future observations

In this session, focus on descriptive and explanatory modelling
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Net survival and excess mortality hazard model

Classical methods used to analyse population-based cancer registry
data

I Net survival: useful for comparison between countries in their
ability to manage (broad sense) cancer patients, after eliminating
other causes of death (potentially different between 2 countries)

I Non-parametric estimator of net survival exists, the Pohar-Perme
estimator (same spirit as Nelson Aalen’s estimator)

I Excess mortality hazard approach: allows to quantify the
mortality due to cancer (still without knowing the cause of death)

In this session, focus on regression models for the excess mortality
hazard
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Excess mortality hazard regression model 1/2

Overall mortality hazard λ (t ;xj) : expressed as the sum of (i) an
excess mortality hazard (due to cancer) λE and (ii) the population
(expected) mortality hazard λP

Equation for the excess mortality hazard

λ (t ,x,z) = λE (t ,x)+λP(a+ t ,y + t ,z)

Where

I Covariables x: age at diagnosis a, deprivation, sex, year of
diagnosis y , stage at diagnosis, ...

I Variables defining the life-table (the population mortality hazard):
age a+ t , year y + t , and z (sex, region, deprivation, ...)
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Excess mortality hazard regression model 2/2

λ (t ,x,z) = λE (t ,x)+λP(a+ t ,y + t ,z)

I The population mortality hazard λP is considered known (usually
obtained from Office for national statistics in life-table format)

I The quantity to estimate is λE

I This excess hazard is associated with the net survival (from the
classical relationship between hazard and survival)
S(t) = exp

(
−
∫ t

0 λ (u)
)

du
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Existing regression models: a brief review

Different regression models have been developed during the last 30
years for fitting excess mortality hazard regression models

Additive decomposition of the overall mortality hazard
λobs = λE +λP and λE(t ;x) = λ0(t)exp(βx)

I Hakulinen et al., 1987 Biometrics: GLM implementation on
grouped data, baseline step function, categorical variables

I Esteve et al., 1990 Stat Med: Maximum Likelihood estimation on
individual data, baseline step function

I Dickman et al., 2004 Stat Med: GLM implementation (Poisson
model with user-defined link function) of the Esteve et al. model
on split data
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Step or smooth function for the baseline excess
mortality hazard
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Existing flexible parametric regression models

Additive decomposition of the overall mortality hazard
λobs = λE +λP and λE(t ;x) = λ0(t)exp(βx)

I Bolard et al., 2002 JECP: Quadratic regression splines,
time-dependent (TD) effects

I Giorgi et al., 2003 Stat Med: Quadratic B-splines, TD effects,
package R (RSurv )

I Lambert et al., 2005 Stat Med: Fractional polynomials, TD effects

I Remontet et al., 2007 Stat Med: Regression splines, TD and
non-linear (NLIN) effects ( f (t)∗age+g(age)) , package R
(flexrsurv )

I Mahboubi et al., 2011 Stat Med: Regression splines, TD and
NLIN effects ( f (t)∗g(age)), package R (flexrsurv)

I Charvat et al., 2016 Stat Med: Regression splines, TD and NLIN
effects, random effects, package R (mexhaz)
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Other existing flexible regression models

Additive decomposition of the overall mortality hazard
λobs = λE +λP

Models assuming λE (t ;x) = λ0(t)exp(βx)

I Pohar et al., Biostatistics 2009: EM algorithm, baseline left
unspecified (Semi parametric excess hazard model)

Models assuming λE (t ;x) = λ0(t)+β (t)x

I Zahl et al., LDA 1998

I Cortese et al., Stat Med 2008

Models on the cumulative hazard scale

I Nelson et al., Stat Med 2007

Multiplicative decomposition of the overall mortality
hazard λobs = λE ∗λP

I Andersen et al., 1985 Biometrics
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Flexible parametric hazard model (FPM) 1/2

In this session, focus on Flexible parametric regression models for the
excess mortality hazard modelled on the hazard scale, and assuming

Additive decomposition of the overall mortality hazard

λobs = λE +λP

Regression models of the form

λE (t ;x) = λ0(t)exp(ν(t ,x))

Following the work published recently by Charvat et al. (Statistics in
Medicine 2016, doi: 10.1002/sim.6881), with the associated
R-package mexhaz
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Flexible parametric hazard model (FPM) 2/2

Definition

λE (t ;x) = λ0(t) ·exp
( A

∑
a=1

βaxa +
B

∑
b=1

fb(t ;ξb)xb
)

I λ0(t) is the baseline excess hazard function

I The variables xa,(a = 1, . . . ,A) have a proportional effect
(possibly non-linear if one specific xa corresponds for example to
the square of the original variable)

I The variables xb,(b = 1, . . . ,B) have a time-dependent effect
modelled with flexible functional forms fb

I Based on classical Maximum Likelihood theory
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Flexible functional form: use of regression splines

I Flexible mathematical functions defined by piecewise
polynomials (usually degree 2 or 3), which join at pre-specified
points called knots

I Forced to have continuous 0th, 1st and 2nd derivatives (ensure
smoothness) for splines of degree 3

I Regression splines are linear in the regression coefficients, so
we can use standard method of inference

I Regression splines can be incorporated into any regression
model with a linear predictor
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Flexible functional forms: Examples of regression
splines

Spline of degree 3, with 1 knot at t=2 (truncated power
basis)

s(t) = a+bt +ct2 +dt3 +e(t −2)3
+

where (u)+ = 0 if u ≤ 0 and u+ = u if u > 0

Spline of degree 2, with 2 knots at t=1 and 5 (truncated
power basis)

s(t) = a+bt +ct2 +d(t −1)2
++e(t −5)2

+
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Flexible functional forms: Examples of regression
splines
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Flexible functional forms: Examples of regression
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Flexible functional forms: regression splines

Restricted cubic regression splines: Regression splines that are
forced to be linear before and after the boundary knots

General expression, for a restricted cubic regression
splines with K knots

s(t) = γ0 +
K−1

∑
i=1

γiBi(t)

where B1(t) = t and
Bi(t), i = 2, ...,K −1 define the basis, according to the knot ki and on
the first and last knot k1 and kK

For more details, see Durrleman and Simon, Stat Med 1989
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Definition of the likelihood - General

Assuming non-informative right censoring, the contribution to the
log-likelihood of individual j with observed data Oj (β denotes the
vector of parameters to be estimated):

LLj(β ;Oj) = log
(
S(tj ;xj)

)
+δj · log(λ (tj ;xj))

=−
∫ tj

0
λ (u;xj)du+δj · log(λ (tj ;xj))

The full log-likelihood LL is defined as the sum of the individuals’
contribution LLj

LL(β ;Oj) =
N

∑
j=1

LLj(β ;Oj) (1)

Maximized using an optimisation routine (e.g. Newton-Raphson
method)
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Definition of the likelihood - For excess hazard
regression model

Individual’s contribution

LLE
j (β ;Oj) =−

∫ tj

0

{
λE (u;xj)+λP(aj +u;yj +u;zj)

}
du+

δj · log
{

λE (tj ;xj)+λP(aj + tj ;yj + tj ;zj)
}

Involves an integral of the overall hazard: use of numerical integration
(Gauss Legendre quadrature in R-mexhaz and Stata-strcs)
The full log-likelihood is the sum of the individuals’ contribution:

LLE (β ;Oj) =
N

∑
j=1

LLE
j (β ;Oj)
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Individual’s contribution to the likelihood

Exercise: Give the mathematical expression of the individual’s
contribution to the log-likelihood for the following 3 observations,
assuming the following model for the excess hazard:

λE (t ;xj) = λ ·exp(β1agediag+β2I(sex = M))

(Female, value sex=2 is the reference)
λP is the Population mortality hazard at the end of the follow-up

Id Agediag Sex Time Dead λP

1 64 1 5 0 0.128
2 78 2 3.7 1 0.281
3 51 1 2.8 1 0.047
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Individual’s contribution to the likelihood

Solution for the first individual

Id Agediag Sex Time Dead λP

1 64 1 5 0 0.128
2 78 2 3.7 1 0.281
3 51 1 2.8 1 0.047

LLE
1 (β ;O1) =−

∫ 5

0

{
λ ·exp(64β1 +β2)+0.128

}
du

LLE
1 (β ;O1) =−5×

{
λ ·exp(64β1 +β2)+0.128

}
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Individual’s contribution to the likelihood

Solution for the second individual

Id Agediag Sex Time Dead λP

1 64 1 5 0 0.128
2 78 2 3.7 1 0.281
3 51 1 2.8 1 0.047

LLE
2 (β ;O2)=−

∫ 3.7

0

{
λ ·exp(78β1)+0.281

}
du+ log

{
λ ·exp(78β1)+0.281

}
LLE

2 (β ;O2)=−3.7×
{

λ ·exp(78β1)+0.281
}

du+ log
{

λ ·exp(78β1)+0.281
}
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Individual’s contribution to the likelihood

Solution for the third individual

Id Agediag Sex Time Dead λP

1 64 1 5 0 0.128
2 78 2 3.7 1 0.281
3 51 1 2.8 1 0.047

LLE
3 (β ;O3)=−

∫ 2.8

0

{
λ ·exp(51β1+β2)+0.047

}
du+ log

{
λ ·exp(51β1+β2)+0.047

}
LLE

3 (β ;O3)=−2.8×
{

λ ·exp(51β1+β2)+0.047
}

du+ log
{

λ ·exp(51β1+β2)+0.047
}
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How to build a regression model ?

Reminder: depends on the research question. To describe, to explain
or to predict.

I The regression model needs to be adjusted for each life table
variable to properly account for informative censoring

I Flexible functional forms for time-dependent and non-linear
effects

I Interactions between variables (still an active research area)

I Information criterion as the Akaike Information Criteria may be
used to choose the best fitting model (also the BIC)

I Another possibility to describe the association between (some)
variable(s) and an outcome: model building strategy proposed by
Wynant et al. (Wynant, Stat Med 2014)
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How to build a regression model ?
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Illustration

Data
I Men diagnosed in 2000-2002 with colon cancer in England
I Variables available:

I age
I stage (4 categories)
I deprivation (5 categories)

Aim: To describe the association between age at diagnosis and the
excess mortality hazard

First explanatory model:

λE (t ;x) = λ0(t)exp
( 4

∑
i=2

αistagei +
5

∑
i=2

βidepi +
5

∑
i=2

γiagecati
)

where λ0(t) is the (exponential of a) B-spline of degree 3, with 1 knot
located at 1 year
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R syntax using the mexhaz package

R-code for the first model:

mexhaz(Surv(timey, dead) ∼ Idep2+Idep3+Idep4+Idep5

+ IstageB+IstageC+IstageD

+ Iagegrp1545+Iagegrp4555

+ Iagegrp5565+Iagegrp75pp,

data=temp, base= "exp.bs", degree=3, knots=c(1),

verbose = 500, expected="rate")
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Results using the first model (Age groups)
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Results using the first model (Age groups)

Effect of deprivation
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Results using the first model (Age groups)

Effect of stage
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Results using the first model (Age groups)

Effect of age groups
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Results using the first model (Age groups)

Net survival by age-group
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Refinements

Second model: linear effect of age

λE (t ;x) = λ0(t)exp
( 4

∑
i=2

αistagei +
5

∑
i=2

βidepi +θage
)

where λ0(t) is the (exponential of a) B-spline of degree 3, with 1 knot
located at 1 year
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R syntax using the mexhaz package

R-code for the second model:

mexhaz(Surv(timey, dead) ∼ Idep2+Idep3+Idep4+Idep5

+ IstageB+IstageC+IstageD

+ agediagc,

data=temp, base= "exp.bs", degree=3, knots=c(1),

verbose = 500, expected="rate")

The variable agediagc was created before, and correspond to
agediag centered: agediagc = agediag-70
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Results using the second model (linear effect of age)

For 1-year increase of age, θ -increase of the linear predictor
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More refinements

Third model: Non-linear effect of age

λE (t ;x) = λ0(t)exp
( 4

∑
i=2

αistagei +
5

∑
i=2

βidepi +βaage+ f (age)
)

where λ0(t) is the (exponential of a) B-spline of degree 3, with 1 knot
located at 1 year and f () is a flexible function (B-spline, degree 2, 1
knot at age 70 (age centred) )
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R syntax using the mexhaz package

R-code for the third model:

mexhaz(Surv(timey, dead) ∼ Idep2+Idep3+Idep4+Idep5

+ IstageB+IstageC+IstageD

+ agediagc + agediagc2

+ agediagc2plus ,

data=temp, base= "exp.bs", degree=3, knots=c(1),

verbose = 500, expected="rate")

The variables agediagc2 and agediagc2plus were created before,
and correspond to agediagc2, and agediagc2

+
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Results using the third model (Non-linear effect of age)

For 1-year increase of age, the increase of the linear predictor is
different when comparing 45 with 44 years old, than when comparing
84 with 83 years old
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Comparison of the 3 first models
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More refinements:Time-dependent effect

Fourth model: Non-linear and time-dependent effect of
age

λE (t ;x) = λ0(t)exp
( 4

∑
i=2

αistagei +
5

∑
i=2

βidepi +βa(t)age+ f (age)
)

where λ0(t) is the (exponential of a) B-spline of degree 3, with 1 knot
located at 1 year. f () and βa() are flexible functions (B-spline)
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R syntax using the mexhaz package

R-code for the fourth model:

mexhaz(Surv(timey, dead) ∼ Idep2+Idep3+Idep4+Idep5

+ IstageB+IstageC+IstageD

+ agediagc + agediagc2

+ agediagc2plus + nph(agediagc),

data=temp, base= "exp.bs", degree=3, knots=c(1),

verbose = 500, expected="rate")

The variables agediagc2 and agediagc2plus were created before,
and correspond to agediagc2, and agediagc2

+
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Results fourth model
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Results fourth model
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Results fourth model

The model: Non-linear and time-dependent effect of age

λE (t ;x) = λ0(t)exp
( 4

∑
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αistagei +
5
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βidepi +ν(t)age+ f (age)
)

A
ge

 a
t d

ia
gn

os
is

40

50

60

70

80

90

Time since diagnosis

2

4

6

E
xcess hazard 0.05

0.10

0.15

0.20

45 / 57



Comparison of the 3 models keeping age continuous

Excess hazard for 55 years old
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Comparison of the 3 models keeping age continuous

Excess hazard for 80 years old
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Comparison of the 3 models keeping age continuous

Net survival for 55 years old
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Comparison of the 3 models keeping age continuous

Net survival for 80 years old
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How to choose the “best” model?

In term of best fitting model, we can look at the AKAIKE
INFORMATION CRITERION (lower is better)

AIC =−2×LL+2×Nparameters

Model with
age with linear effect: 43787.46
age with Non-linear effect: 43710.12
age with Non-linear and Time-dependent effect: 43416.64
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The importance of Time-dependent effect
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The importance of Time-dependent effect
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A full-week short course: Corsican Summer School on
Modern Methods in Biostatistics and Epidemiology
2017

I Statistical methods and recent advances in statistical methods
for excess risk analysis

I Monday 3rd July to Friday 7th July 2017, in Corte (Corsica,
France)

“http://sesstim.univ-amu.fr/hearstat-2017”
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